Tuesday, August 17, 2010

Bench Press - Part Eight





2.14 – Hand/Finger Orientation in Holding the Bar

There are three major methods in vogue for grasping the bar during bench presses: (1) “Normal” grip with palms facing away from head and fingers wrapped around the bar; (2) “Balance” or “False” grip with palms facing away from head but fingers not wrapped around the bar and usually only touching the bar (normally on top) for balance; and (3) “Reverse” grip, popularized by the two bodybuilding brothers “The Barbarians” and Anthony Clark, where the bar is gripped with the palms facing the head.

The most dangerous, of course, is the balance grip where the fingers do not wrap around the bar. I have seen a number of lifters use this, but seldom the best bench pressers. I believe the reason that most top bench pressers prefer the normal grip is that when you use the bar path we’ve discussed, the fingers wrapped around the bar may help both in producing and accommodating the horizontal motion of the bar. I have seen too many bars dropped (even in national competition) using the balance grip, and I caution against its dangers. The reverse grip, believe it or not, although awkward and feeling for most, should not significantly hurt bench press performance. The reason for this is that triceps force capacity does not depend on what grip is used (i.e., forearm pronation/supination).

No matter what grip is used, it is most important to realize that besides controlling the bar and ensuring that it doesn’t fall out of the hands, the grip primarily serves to transfer force from the body to the bar. Since these forces are primarily transferred through the ulna bone of the forearm to the bar, it seems valuable to position the bar near the ulnar surface of the hand (on the little finger side of the palm). An extra benefit obtained from placing the bar across the ulnar surface of the hand has to do with one of the body’s “protective” neuromuscular reflexes.

The human body has a number of these protective neuromuscular reflexes that serve mainly to protect the body from injury. It has been shown, for example, that pressure on the ulnar side of the hand (near the fleshy part of the palm on the little finger side) causes extensor or stabilization response in the upper arm. This reflexively aids the stability of the whole upper arm by stimulating greater contraction of the elbow extensors, especially the triceps.

As you may have noticed, a number of top lifters can be seen pronating their forearms to be sure that the bar rests not transversely across the center of the palm, but rather more on the ulnar surface of the hand. I have often taught this extensor reflex maneuver to beginning weight training classes by instructing them to put the weight on the ulnar surface of the hand during all sorts of triceps exercises (triceps pushdown, dips, etc.). You will be surprised if you try this at how powerful and comfortable this maneuver makes the arm feel.

An additional benefit of having the bar positioned over the ulnar surface of the palm (besides those just discussed) is reduction of the wrist torque. Those who place the bar far up on the palm can dramatically increase the torque about the wrist joint. For all bench pressers, using tight elastic wrist wraps (permitted by the rules of Powerlifting) can help relieve these wrist torques. Although I feel it’s best not to use these wrist wraps all the time in training (so that the wrist connective tissue develops fully) it doesn’t seem to hurt, especially in competition. I recommend them in all competitive or maximal training efforts.


2.15 – Symmetrical Loading of the Bar

The way in which the barbell plates are placed on the bar, as well as the spacing of the hands on the bar are important in bench pressing. The narrower the grip the more important the symmetrical placement of the plates on the bar. With heavy weights in particular, I strongly recommend that the bench presser: (1) check that the plates are positioned so that the heaviest plates are closest in; (2) use the heaviest plates when possible, and I even mean 100 lb. plates as soon as the poundage permits. Even though a lot of plates “look” more impressive, it is better to go to the larger (more centrally located) plates; and (3) always use collars to keep the plates from inadvertently sliding further out toward the ends of the bar. The logic behind all three of these suggestions is that the lateral torque about each shoulder should be minimized as much as possible in order to avoid asymmetry and potential injury. Every bench presser should PERSONALLY check these.

It is similarly important to evenly grip the bar (again, especially with narrow grip spacings). The knurling can be used as a guide to ensure symmetric hand spacing. Bench presses should preferably be handed off and spotted by a single spotter who grabs the bar in the middle. I prefer this (even though two spotters, one on each end of the bar, would seem desirable.) since it is typically difficult for two spotters to coordinate their action without asymmetry and potential injuries. Obviously, this all becomes more important the heavier the weight in the bench press. Finally, if you are significantly weaker in one arm I don’t recommend using an offset grip spacing (with the weak hand closer in) except for emergency situations like a meet. It is more preferable to use symmetrical lifting and let the weight ease back up than to risk injury by overloading the “stronger” side.


2.16 – What if You Miss?

Statistically, weight training is one of the safest activities you could possibly engage in. However, there have been occasional severe injuries and even a few deaths attributed to weight training. Most of these deaths (however few they may be) occurred when performing (guess what) bench presses. Typically this has occurred when people were bench pressing alone without a rack or catchers, got pinned under too heavy a weight and couldn’t get help. Not a very pleasant scenario, but one has to ask – what were they thinking!

When you miss a lift while bench pressing alone, unless you use a rack or boxes, you are suddenly in an extremely dangerous situation. Don’t be a fool. Devise a safe way to bench safely on your own. Enough said about something so obvious.


2.17 – Power Output

Power is defined as the rate of doing work. Conceptually, it can be thought of as the ability to do work (or exert force over some distance) quickly. The maximum and average mean values during raising the bar are shown in Table 9 for all the groups studied 9in references 7 and 9, Section 1.4). It is first apparent that the power outputs of the two light groups were not significantly different. However, the power produced by the heavier lifters was over 40% greater than the lighter groups. This was true (see Table 9) for both the maximum power (i.e., the instantaneous maximum product of force on the bar and bar velocity) and also for the average power during the raising phase (i.e., the ratio of work done on he bar to the time required to lift it). It should be mentioned that the higher power outputs recorded for the heavier lifters was larger than the increase expected from the heavier weight lifted alone. However, this is reasonable since Olympic lifting results (see reference 1) support the trend for greater power outputs for lifters of increased bodyweight for any given movement. Since these heavy powerlifters (again, from reference 9, Section 1.4) have more body mass one would expect that their greater muscle size would permit greater strength and power production. This is reflected in the fact that even though the heavy elite powerlifters lifted about 30% more weight than the light experts, they pushed the bar up .3 seconds faster (see Table 3).

These power outputs (from Table 9) are small relative to values reported in the research literature (reference 1). Values of up to 6000 NM/s have been measured for Olympic lifters (reference 1). Additionally, in 1980 I did a study with Dr. John Garhammer where we compared the power output in the Olympic versus Powerlifts. Generally the power produced in the Powerlifts was at least one-half as much as in the Olympic lifts (reference 2). Two implications arise from this information: (1) Powerlifting is perhaps not the best name for our sport, since our power outputs are actually on the low end of powers produced in human activities. Perhaps we should rename ourselves more appropriately “strength lifters”, etc.; and (2) The use of training programs especially designed for peaking power production (as typically used for Olympic lifters) may need rethinking. The degree to which the development of either strength or power should be emphasized in bench press training programs is a very interesting albeit difficult question. Personally, I feel that most bench press training should emphasize strength development over power.


References

(1) Garhammer, J. “Power production by Olympic weightlifters”, Medicine and Science in Sports, 12:54-60, 1980.

(2) Garhammer, J. and McLaughlin, T.M. “Power output as a function of load variation in Olympic and Powerlifting”, Abstracts: Journal of Biomechanics, 13:198, 1980.

No comments:

Blog Archive